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Abstract

We present a natural solution to the strong CP problem in the context of split fermions.

By assuming CP is spontaneously broken in the bulk, a weak CKM phase is created in the

standard model due to a twisting in flavor space of the bulk fermion wavefunctions. But

the strong CP phase remains zero, being essentially protected by parity in the bulk and CP

on the branes. As always in models of spontaneous CP breaking, radiative corrections to

theta bar from the standard model are tiny, but even higher dimension operators are not

that dangerous. The twisting phenomenon was recently shown to be generic, and not to

interfere with the way that split fermions naturally weaves small numbers into the standard

model. It follows that out approach to strong CP is compatible with flavor, and we sketch

a comprehensive model. We also look at deconstructed version of this setup which provides

a viable 4D model of spontaneous CP breaking which is not in the Nelson-Barr class.
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I. INTRODUCTION

Among the many mysteries of the standard model, the strong CP problem may

provide a unique window into new physics. The reason is that although the strong

CP phase θ̄ is tiny (θ̄ ∼< 10−10 [1]), it is both UV sensitive and technically natural.

Other tuned UV sensitive parameters, such as cosmological constant (Λphys ∼ 10−120

in units of the Planck mass) correspond to relevant operators and get large quantum

corrections independent of their initial classical value. Other technically natural pa-

rameters, such as the mass of the electron (me ∼ 10−6 in units of the Higgs vev) are

protected by a custodial symmetry (a chiral symmetry in the case of me), and so the

quantum corrections are proportional to the initial value and thus calculably small.

The strong CP phase has the peculiar property that the Lagrangian possesses no

additional symmetry when θ̄ = 0 and yet the radiative corrections to θ̄ are still small.

In fact, they are so small that from a model-building point of view, the strong CP

problem is easy: we can just choose by hand a vacuum where θ̄ = 0 at tree level and

be done with it. But then we are forgoing a promising opportunity. The important

point is that while formally θ̄ is UV sensitive, in practice it acts much like a flavor

parameter. And so by exploring how we may get θ̄ to behave exactly like a flavor

parameter, we may gain insight into models of both flavor and CP.

Of course, the real reason to associate the strong CP problem with flavor physics is

much more obvious: all CP violation, weak and strong, can be encoded in the Yukawa

couplings. This is also the reason that the finite corrections to θ̄ are small: CP

violation must involve three generations, and hence many Yukawa couplings [2, 3, 4],

most of which are small.1

So, it is natural to expect a solution to the flavor puzzle, that is a simplification of

the hierarchy of fermion masses, to coordinate with a solution for the CP problem,

that is the hierarchy between θweak ∼ 1 and θ̄. Moreover, precisely because θ̄ = 0 is not

protected by a custodial symmetry there must be new physics that distinguishes its

tree level value from θweak, and this physics may also distinguish the three generations

1 θ̄ also gets an divergent logarithmic renormalization at 7-loops, but with a UV cutoff of Λ ∼ MP

this turns out to be smaller than the finite piece [2].
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of fermions. Yet it is remarkable that most of the solutions to the strong CP problem

involve physics which is not directly related to the solution of the SM flavor puzzle.

Let us be a little more concrete. Although there is only one reparameterization

invariant strong CP phase θ̄, it is useful to write it as:

θ̄ = θQFD − θQCD (1)

Here, θQFD is related to the phases of the quark masses

θQFD = Arg Det[YuYd] (2)

and θQCD is the coefficient of the topological FF̃ term in the QCD Lagrangian:

L ⊃ θQCD
g2

s

32π2
εµναβF a

µνF
a
αβ (3)

This separation is artificial: a chiral rotation of the quarks will move the phase

between θQCD and θQFD through of the chiral anomaly. Thus we can always choose

θQCD = 0. But this can be misleading. For example, if we have some flavor model

which manipulates the Yukawas so that θQFD = 0, we can no longer assume θQCD = 0

by a gauge choice. That is, it is inconsistent to choose θQCD = 0 and then work

on θQFD. We must address the problems together because the chiral anomaly makes

θQCD and θQFD indistinguishable. On the other hand, we can force θQCD = θQFD = 0.

by imposing a symmetry, such as CP, instead of simply rotating the phase into θQFD.

Of course, because CP is not a symmetry of the standard model, it must broken. But

if it is broken spontaneously, then the corrections to θ̄ are finite and calculable, and

the distinction between θQCD and θQFD helps us write down operators and estimate

their size. In particular, we can address the strong CP problem through the flavor

sector. The question becomes: after spontaneous symmetry breaking, why is the

combination of Yukawas in θQFD (2) small while the Jarlskog combination [5]

θweak = Arg Det[YuYd − YdYu] (4)

is nearly maximal? This has the gist of flavor questions, such as why is the top

Yukawa large while the others are small and hierarchical. So we are led to search for

a unified framework to approach the strong CP and flavor problems at the same time.
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Of the many proposed solutions to the strong CP problem, some of which we review

and compare in Section V, most have no relation to flavor whatsoever. For example,

the Peccei-Quinn solution [6] promotes θ̄ to a field, which dynamically relaxes to zero.

It patently has nothing to do with flavor. Another possible solution is that mu = 0,

but this seems to be disfavored by lattice calculations [7] (although still conceivable,

see e.g. [8]). The models that could relate to flavor all seem to involve spontaneous

CP breaking, which will be the main subject of this work.

The archetypal spontaneous CP violating theory was designed by Nelson [9], and

generalized by Barr [10]. It introduces additional scalars and vectorlike fermions which

transform non-trivially under the standard model flavor group. After a scalar get a

complex vev which breaks CP, global symmetries ensure that θ̄ = 0 to leading order.

But the symmetries allow θweak to be large2. These Nelson-Barr models bear a strong

superficial resemblance to Froggatt-Nielson [13] type flavor models. Indeed, in the

the Froggatt-Nielsen paradigm, new flavor symmetries are also added to the standard

model, along with heavy scalars which break them. The symmetries and breaking are

designed to give the right texture to the standard model CKM. However, even though

Froggatt-Nielsen type flavor models and the Nelson-Barr type strong CP models have

homologous ingredients – they both involve spontaneous symmetry breaking and new

heavy scalars – there does not seem to a compelling model unifying the two.3

In the current work, instead of trying to merge Nelson-Barr and Froggatt-

Nielson, we mix spontaneous CP breaking with the split fermion approach to flavor

physics [17]. The idea behind split fermions is to localize the standard model fields

at different places in an extra dimension, so that overlap of their Gaussian profiles

generates hierarchies. Since the claim-to-fame of the split fermion models is that they

do not invoke new symmetries, it is hard to imagine how they could distinguish the

strong and weak CP phases. However, extra-dimensions do have new symmetries –

5D Lorentz invariance, and locality – which turn out to provide an almost effortless

2 A perhaps minimal implementation of Barr’s criteria can be found in [12].
3 Candidates include [14], which gives the wrong texture and [15], which involves adjoints of

SO(3)flavor, but has not been developed into an actual flavor model. [16] provides a brief re-

view.
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FIG. 1: The symmetry breaking structure of our model at leading order.

solution of the strong CP problem.

Indeed, if we take a 5D orbifold and have CP broken by a scalar which vanishes on

the boundary, where parity is broken, then either P or CP is a symmetry everywhere,

as shown in Figure 1. Because θ̄ is P and CP odd, the strong CP phase will vanish at

tree level, and its radiative corrections are strongly constrained by locality. In addi-

tion, generically the fermion zero-mode wavefunctions will rotate in flavor space [18]

as they progress from brane to brane. This twist can produce large flavor mixing and

physical CP violating phases, in particular a large θweak, but no θ̄. The purpose of

paper is to explore the details of this mechanism.

In Section II we review some features of fermions in five dimensions, including

discrete symmetries, splitting and twisting. Section III combines these ingredients

into a simple model which shows how twisting can address the strong CP problem.

This, without extra ingredients, sets θ̄ = 0 at leading order and yields θ̄ ∼ O(10−7)

if we include the strongest higher dimension operators. We then show how some

non-Abelian flavor symmetries can be added to reduce θ̄ < 10−12, which is well in

line with current bounds. Some other ways in which the dangerous operators can

be suppressed are also discussed. We then show how the setup is compatible with

the split-fermions mechanism for generating flavor hierarchies. Section IV is devoted

to the deconstruction of these models, where we show the analog of twisting in a

purely four-dimensional context. Although formally the deconstruction works, the

4D version is much messier than the 5D one, basically because parity is badly broken.
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In Section V we show why the use of parity in extra dimensions is more natural than

in left-right symmetric models. Finally, in Section VI we elaborate our point-of-view,

and conclude.

II. 5D FERMIONS, SPLITTING AND TWISTING

The models we will discuss begin in five dimensions on M4 × S1 with a set of bulk

fermions Ψi and scalars Φa, and perhaps some other fields living on branes. We will

assume CP is an exact symmetry at high energy, and is spontaneously broken by the

condensation of at least one of the bulk scalars 〈Φ〉 6= 0. A scalar with a position

dependent vev can be used to generate fermion hierarchies, and we will see that the

same scalar can be used for both purposes.

In 5D, fermions are vectorlike, and can be written in terms of chiral fermions

as Ψ = ΨL + ΨR, where γ5ΨL = ΨL and γ5ΨR = −ΨR. A 5D Lorentz invariant

Lagrangian is automatically invariant under 5D parity, which interchanges L and R.

In particular, a generic Yukawa interaction has the form

L5D = hijΦΨ̄iΨj + h.c. =
(

hijΦ + h†ijΦ
∗
) (

Ψ̄LiΨRj + Ψ̄RiΨLj

)

. (5)

Here, i and j are flavor indices. After Φ gets a vev, the effective mass matrix for the

fermions is:

Mij = hij〈Φ〉 + h†ij〈Φ∗〉 . (6)

Note that this matrix is Hermitian, even if the Yukawas hij are complex. We empha-

size that this is guaranteed by parity which is part of 5D Lorentz invariance. It is

also very different from the way parity works in Left-Right symmetric models, which

we review in Section V.

In order to have a chiral theory, we need to turn our S1 into an orbifold by modding

out by a Z2. The Z2 acts on fermions as Ψ(z) → γ5Ψ(−z) and scalars as Φ(z) →
±Φ(−z). Note that this symmetry forbids a bulk mass term of the form mΨ̄Ψ, since

it sends Ψ̄ → −Ψ̄γ5, but allows the Yukawa interactions in (5) if the Φ is Z2 odd

(Φ(z) → −Φ(−z)). Such a Φ must vanish at the orbifold fixed points and thus its

vev will be position dependent [19, 20]. When we orbifold, by identifying a field with

6



its Z2 image, half the fermion zero modes, say the right-handed ones, are projected

out.

Following from the 5D Lagrangian,

L = Ψ̄i

(

i 6∂ − γ5∂z

)

Ψi +Mij(z)Ψ̄
iΨj (7)

the left-handed zero mode profiles are determined by

[∂zδij −Mij(z)]ψ
j
Lα = 0 (8)

Note that for a generic z-dependent matrix Mij(z), this is a set of three (for three

flavors) coupled differential equations. The spectator index α distinguishes the three

independent solutions and will become the flavor index in the effective 4D theory.

The form of M and its z-dependence, produces both splitting, which can establish

flavor hierarchies, and twisting, which we will use here for strong CP.

Let us write solutions to (8) in terms of an evolution operator Kij :

ψj
L(z) = Kij(z)ψ

i
L(0) (9)

where we take ψi
L(0) to be an eigenstate of Mij(0). It follows that Kij can be written

as a Dyson series:

Kij(z) = P
{

e
∫

z

0
M(z′)dz′

}

= lim
N→∞

N
∏

n

[1 + (zn+1 − zn)M(zn)] (10)

where P{} denotes the path-ordered product. An important point is that each term

in this product is an Hermitian matrix, and so

Det[Kij(z)] ∈ R, for each z. (11)

There is a subtlety here about whether ψi
L are orthonormal, and if they are not

whether their diagonalization will introduce a phase into K. In Appendix A we show

this is not a problem.

In the case that Mij can be diagonalized with a z-independent flavor rotation,

the path ordering is trivial. So Kij is diagonalized too. Then one can see from the

exponential form in (10) that the zero mode wavefunctions will be localized. Because

the different flavors may be split, that is, localized at different points, their overlaps

can be hierarchical. This is the split fermion solution to the flavor problem.
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In general, however, Mij will not be diagonalizable at every z by a global flavor

rotation. In fact [18], if

[M(z),M ′(z)] 6= 0, for some z. (12)

then a zero mode fermion at the boundary z = π will differ from its value at z = 0 by

a twist Kij(π). Note that even if Mij(z) vanishes at 0 and π, which it will because of

the boundary conditions on Φ, the last expression in (10) shows that there will still

be non-trivial twisting because of the intermediate values of Mij . As we will show in

the next section, this is exactly what we need for the CP problem: because K is a

complex matrix with real determinant, it can add a weak CP phase into the Yukawas

without adding a strong one.

To be more explicit, CP works in 5D just like in 4D: it acts on fields by Hermitian

conjugation. That is, Φ → Φ⋆ and Ψ → Ψ̄ (and so ψL → ψ̄L and ψR → ψ̄R). Unlike

parity, CP invariance is not an automatic consequence of 5D Lorentz invariance, but

we may impose it. Then, like in 4D, because Lagrangians are already Hermitian, CP

forces all the c-numbers to be real. In particular, the Yukawa couplings hij in (6)

must be real.

As usual, CP is only defined up to a phase. So saying CP invariance is equivalent

to couplings being real is just a convention4. Moreover, we are also free to employ

a global flavor rotation to choose our fermion basis, which should not affect the CP

properties of the theory. (This is why it is important to use the basis independent

definitions of θweak and θQFD in (4) and (2).) In the current context, however, there

is an additional subtlety. Even if we cannot use a global flavor rotation to choose an

untwisted basis, that is one where Mij(z) is diagonal at each z, if we can choose a

basis so that Kij is real, the twist cannot mediate violations of CP. The corresponding

basis independent condition on Mij(z) is

Arg Det[M(z),M ′(z)] 6= 0, for some z. (13)

4 There is an interesting model [15] of strong CP which uses this ambiguity to show that one can

have “real CP violation.”
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This will be the necessary condition for the twist to mediate CP violation. Note that

this is a stronger condition than that for a twist (12), but is still generically satisfied,

as we will see in the model in the next section.

III. A SIMPLE MODEL FOR STRONG CP

We begin with a simple setup which addresses the strong CP problem. We will find

that with the right allocation of fields in the bulk and on the boundary, θ̄ is naturally

zero, but θweak is generically large. As always, the finite radiative corrections to θ̄ are

small. So we go on to consider the contribution form higher dimensional operators,

which cannot be neglected in the non-renormalizable 5D theory. Although we do not

give a detailed flavor model, we also show how our flavor hierarchies can generated

within our setup.

A. Tree level solution

As discussed in the previous section, the scene takes place on an orbifold S1/Z2.

We assume CP is a symmetry at high energy, spontaneously broken by a bulk scalar

Φ. The SU(2) quark doublets of the SM, Qi, live in the bulk while the SU(2) singlet

quarks, uα
R and dα

R, are allocated to opposite fixed points5: uα
R at z = 0 and dα

R at

z = π. The right handed component of the bulk fermions Qi
R are odd under the

orbifold Z2 and thus the right handed zero modes are projected out of the theory.

The CP breaking scalar Φ is a standard model singlet but odd under Z2, so that it

can have Yukawa couplings to the fermions. The SM Higgs H lives in the bulk. The

setup is summarized in Figure 2.

5 The main difference between our setup and some others [18, 21] is that we localize some of the

quarks on branes in 5D. This introduces local anomalies, which can be canceled by adding a parity

violating Chern-Simons term in the bulk [22]. However, the easiest way to see that local anomalies

and bulk parity violation are fictitious is to think of the singlet quarks as dynamically localized

bulk fields.
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FIG. 2: Particle content of the model.

In addition to the kinetic terms, the Lagrangian of the model, written in chiral

notation, contains Yukawa interactions and a scalar potential:

L ⊃
∫

d5x
[

(hijΦ + hT
ijΦ

∗)(Q̄LiQRj + Q̄RiQLj) + VΦ

]

+
∫

d4x
[

Y u
iαHQ̄LiuRα

∣

∣

∣

z=0
+ Y d

iαH̃Q̄LidRα

∣

∣

∣

z=π
+ h.c.

]

(14)

For clarity, we have used i and j to label the three generations of bulk fields and α to

label fields on the branes. The Yukawa couplings Y u, Y d and h are all real because

we assume CP is a good symmetry.

Because the scalar Φ is odd under the orbifold Z2, its vev must vanish at both

fixed points. However, it may have a non-trivial profile if we include a potential [21].

Moreover, it is reasonable to give its real and imaginary parts different potentials:

VΦ = λR[(Φ + Φ∗)2 − µ2
R]2 + λI [(Φ − Φ∗)2 − µ2

I ]
2 (15)

so that the phase of its vev will generically twist in the extra dimension.

Since the Higgs, H , is even under the orbifold Z2, we will assume its zero mode

is flat, for simplicity. Then the 4D Yukawas are determined by the 5D Yukawas and

the value of the doublet wavefunctions on the branes:

yu
αβ = Y u

αiQ
i
Lβ(0) and yd

αβ = Y d
αiQ

i
Lβ(π) = Y d

αiKij(π)Qj
Lβ(0), (16)

Here, Qi
Lα(z) are the three vector solutions of equation (8) indexed by α, with com-

ponents indexed by i. The evolution matrix Kij is defined in (10), and expresses the
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effect of twisting on the zero mode profiles. Because the Y ’s are real, and because of

K has a real determinant, we have

θ̄ = ArgDet(K(π)Y uY d) = 0 (17)

But Kij is complex, because of the complex vev of Φ, and so the twist induces

phases into the Yukawas. More precisely, the effective mass matrix in the bulk is

M = h〈Φ〉 + hT 〈Φ∗〉. Since [h, hT ] 6= 0 in general, and 〈Φ〉 6= 〈Φ∗〉, the criterion (13)

is satisfied and we should expect θweak, given in (4), to be large. So the strong CP

problem is solved, at leading order.

B. Corrections

One might worry that there could be mixing between the zero modes and the

higher KK modes of the fermions, which invalidate our tree level result. However, it

is not hard to see that this does not happen. Because of the extra chiral fermions

on the brane, the KK theory has the same number of left-handed and right-handed

modes. So we can write down the effective mass matrices for the up and down type

quarks as:

Mu =























Yαβ〈H〉 0 0 0

. . .
... . .

.

... · · · Mu
KK · · ·

. .
. ...

. . .























, Md =























YαβK(π)〈H〉 0 0 0

. . .
... . .

.

... · · · Md
KK · · ·

. .
. ...

. . .























(18)

The entries in the top row are the mixings between the left handed KK modes and

the right-handed zero modes, both of which are bulk fields. The zeros appear because

in the KK basis bulk modes at different mass level are orthogonal. In addition, we

cannot write brane-localized mass terms because QR vanishes on the brane. Also,

MKK
u and MKK

d are Hermitian, by parity, and thus have a real determinant. It

follows that including the whole KK tower

θ̄ = Arg Det(MuMd) = Arg Det(K(π)Y uY d) = 0. (19)
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So the only relevant quantity for the strong CP problem at tree level are the zero

mode Yukawas appearing in (16). Note that the first columns of Mu and Md are

in general non-zero and complex, because the bulk KK modes do not vanish on the

branes, but they do not contribute to the determinant.

The leading contribution to θ̄ in this model comes from higher dimension operators.

Indeed, in 5D model building, one is confronted directly with non-renormalizability

because the gauge interactions blow up near the compactification scale. For example,

with a 4D gauge coupling g, one cannot take the cutoff higher than

Λ ∼ 24π3

Lg2
(20)

where L is the compactification length. So we must worry about CP invariant higher-

dimension operators which will contribute to θ̄ when Φ gets a vev.

As shown in Figure 1, parity forbids a direct contribution to θ̄ in the bulk. But

there are dangerous operators which may couple the bulk to the the branes. For

example, consider √
24π3

Λ7/2
i(∂5Φ − ∂5Φ

∗)FF̃ δ(z) , (21)

where the factor of
√

24π3Λ−7/2 comes from naive dimensional analysis (NDA)

in 5D[23]. This operator gives a direct contribution to θQCD once Φ gets a vev.

If we assume 〈Φ〉 ∼ cL−3/2 then we get

θ̄ ∼ 32π2 c g7

(24π3)3
∼ 7 × 10−7 (22)

where in the last expression we have taken g ∼ 1 and c ∼ 1.

We want to emphasize that there is a lot of unknown physics in this estimate.

The assumption behind NDA is that the tree level contribution of higher dimension

operators should be comparable to higher loop effect involving any other operators

in the theory. However, it is possible that some of the fields are weakly coupled

at the cutoff, as is the case for the photon in the chiral Lagrangian. For example,

in our case we may prefer Φ to be somewhat weakly coupled. Recall that h〈Φ〉 is

exponentiated to get the flavor hierarchies, so we should have h〈Φ〉 ∼ 5L−1. We have

taken 〈Φ〉 ∼ L−3/2, which can be justified by observing that there is already a field

with this vev, namely the radion, so we might as well have two. Then, to get the
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correct hierarchy Φ should couple semi-perturbatively leading to a slightly smaller

estimate for θ̄.

There are other dangerous operators, for example,

4π
√

24π3

Λ7/2

(

c1αi∂5Φ + c2αi∂5Φ
∗
)

HūRαQLi δ(z) + h.c. (23)

We have used the 4D normalization for the 4D field uRα, but 5D normalization for

everything else. This gives contribution to θQFD and hence θ̄ which is the analog

of (22), but smaller by a factor of 8π. One might have expected that (21) and (23)

should give the same contribution to θ̄, because the two are related by a chiral rotation.

However, as discussed in the introduction and the paragraph before equation (13), we

have already fixed a basis in which the Yukawas are real, and so we cannot perform

chiral rotations anymore; the only consistent statement we can make is that the

physical θ̄ is given by the larger of the two contributions, namely (22).

We find it remarkable that without any contrived assumptions, the natural size

of θ̄ in this model is small. We can bring it down to the experimental constraint by

tuning. In fact, this is what is normally done in models of spontaneous CP violation.

For example, in 4D models, such as Nelson-Barr, higher-dimension operators such as

(21) are usually ignored. This is justified, for example in [11], by taking 〈Φ〉 ≪ Λ.

Of course, it is easier to defend such an approximation in a renormalizable 4D theory

than in the 5D case, but if one includes gravity or any possible UV extension of

Nelson-Barr, then the tuning is just as severe.

If we are not satisfied with fine tuning, there are a number of other straightforward

ways to simply prevent the leading dangerous operators from appearing at all. First,

note that the dangerous terms involve couplings of Φ to brane fields. But we saw

in (10) that even if the mass matrix twists far away from the branes, there can still

be a large physical effect. We may thus suppose that Φ only has support in some

region in the middle of the bulk, and then the CP problem is still solved, but the

dangerous terms identically vanish. Although we do not know of a way to justify this,

for example through string theory, the important point is that it turns the strong CP

problem over to a completely different type of model building effort.
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Another way around (21) and (23) is to prevent them with flavor symmetries. For

example, suppose instead of a single complex bulk scalar, we had eight of them, Φij

transforming as an adjoint under SU(3)flavor [18]. This is the diagonal flavor group

of the standard model, under which all the fermions transform as fundamentals. The

SU(3) invariant Lagrangian has diagonal Yukawas and is given by:

L ⊃
∫

d5xΦij(Q̄LiQRj + Q̄RiQLj)

+
∫

d4x δiαHQ̄LiuRα

∣

∣

∣

z=0
+ δiαH̃Q̄LidRα

∣

∣

∣

z=π
+ h.c. (24)

We will assume that the scalar vev rotates in flavor space along the extra dimension,

and so we still have a twist. This assumption may seem implausible if the scalar

potential is flavor symmetric, because the rotation would cost energy, but we give

several examples of how it can work in Appendix B.

As before, the bulk mass matrix is Hermitian everywhere (now due to the flavor

structure as well as the 5D Lorentz invariance) and the effective 4D Yukawas again

have a real determinant. However, the higher order corrections are now modified to

accommodate the flavor symmetry. In particular, the operator (21) is now forbidden.

The leading contribution to θQCD now depends on the specific realization of the twist

(see Appendix B), but must be at least second order in Φ. Typically, we find that

the leading contribution to θ̄ comes form operators such as

24π3

Λ6
iTr(∂5Φ)2FF̃ δ(z). (25)

which yields

θ̄ ∼ 32π2 c2 g12

(24π3)5
∼ 10−12 (26)

This is now well out of reach of experimental precision.

Note that with the flavor symmetry, operators like (23), while not forbidden, no

longer contribute to θ̄. Adding such corrections modifies the Yukawa couplings in (24)

from δiα to

λu
iα = δiα +

c1∂5Φiα + c2∂5Φ
T
iα

Λ3.5

∣

∣

∣

∣

∣

z=0

(27)

and a similar term for the down Yukawas at z = π. Even though this is a complex

contribution to the Yukawa couplings, the Yukawa matrix is guaranteed to be Hermi-
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tian by the flavor structure and thus has a real determinant. The argument for the

reality of the determinant of the effective 4D Yukawa couplings thus remains intact.

C. Flavor

The purpose of this paper is to show that there is a natural solution to the strong

CP problem in the context of split fermions, which is designed to address flavor. So

we will now explain qualitatively how flavor and CP are naturally incorporated in the

same setup.

In split fermions [17], the Yukawas are taken to be order one, and the flavor hier-

archies come from small overlaps of the bulk wavefunctions. One might immediately

wonder whether twisting would smooth out the hierarchies, but it was shown in [18]

that this does not happen. In the current framework since the SU(2) doublets are in

bulk and the singlets on the brane, it will not be overlap integrals which generate the

hierarchies, but rather the exponential suppression of the zero mode wavefunctions

on the branes. More precisely, since uR and dR are placed on opposite branes, the size

of the effective 4D Yukawa, yu and yd, will be set by the value of the QL wavefunction

at z = 0 and z = π respectively. The intermediate values of the QL wavefunctions

are basically irrelevant.

The exponential (or Gaussian) behavior of the zero mode wavefunctions can be seen

from the formal solution (10). By playing with the order one factors in the widths

and centers of these profiles, we can achieve the desired structure in the standard

model Yukawas. For example, we can arrange the profile of the first generation to be

highly peaked somewhere near the center of of the extra dimension, so that its value

at both branes is small yielding light u and d quarks. Similarly, the second generation

could be a broader peak, while the third generation is roughly flat. By moving the

centers of the profiles slightly closer to one brane than the other, we can establish

mass differences within a generation, for example, between u and d. See Figure 3.

Up until now, we have not really shown how the CKM mixing will occur. Es-

sentially, mixing will be induced due to the twist that introduces a relative rotation

between the mass eigenstates at z = 0 (up-type) and z = π (down type). As men-
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FIG. 3: A cartoon showing how mass hierarchies can be generated if only the SU(2) doublets

are in the bulk. 1, 2 and 3 refer to the norms of the zero mode wavefunctions for the 3

generations of standard model quarks.

tioned in Section II, since this rotation is generally complex so (13) is satisfied, there

should be an order one CKM phase. Just to make sure that there is no acciden-

tal symmetry which makes the CKM phase vanish, we have numerically solved the

system in a few simple cases and verified in fact that θweak is large and θ̄ is zero.

We furthermore expect that the hierarchical values of the quark doublet profiles

which lead to the mass hierarchy will dictate the texture of the CKM matrix. Our

framework may thus be viewed as ‘predictive’ in the sense that the textures of both

the mass hierarchy and the mixing are set only by 6 free parameters. Again, we tried

plugging in a simple guess and numerically evaluated the result. It is not hard to get

a rough quantitative agreement with the standard model; but this picture, at least

qualitatively, gives the correct features.

Finally, we should also mention that the strongest constraint on flavor models

usually comes from flavor-changing neutral currents (FCNCs). In extra-dimensional

models, the strongest constraint comes from the exchange of KK gluons [24] which

puts a lower bound on the compactification scale: 1/L <∼ 1000 TeV. Our estimates

for θ̄ were basically independent of L, and so we have no problem with simply taking

L as small as necessary.
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FIG. 4: The matter content of our four dimensional model as distributed on the two sites.

IV. DECONSTRUCTION

In this section we will deconstruct the twisting solution for the CP problem to

obtain a purely 4D mechanism. Our initial motivation was to understand the twisting

within 4D effective theory. However, as we will now show, the 4D model does not

work in the same way as the 5D one. Nevertheless, we end up with a 4D model of

spontaneous CP breaking which is viable but does not fall into the Nelson-Barr class.

In practice, deconstructing higher dimensional theories with fermions is surpris-

ingly tricky. In the continuum description, one can produce a chiral theory from a

vectorlike one using boundary conditions. On the lattice, an analogous mechanism

is not known – deconstructing bulk fermions directly will always lead to the same

number of left and right-handed modes. Thus, in the deconstructed description one

needs to start with a chiral theory. Moreover, there is also no exact symmetry in 4D

corresponding to 5D locality, so one cannot reliably confine these chiral modes to a

particular site. In practice, one can simulate locality in theory space with some global

symmetries, such as discrete Z2s. and arrange a mass matrix that will concentrate

the zero modes on the end cites [25]. So, in the end, it is not that difficult to create

a 4D model which qualitatively matches a 5D one, but we cannot sincerely interpret

it as deconstructing the 5D mechanism.

A. Tree level solution

Let us construct a 2-site model using the ingredients of the 5D solution. We start

by introducing the matter content of our model, which is summarized in Figure 4.

The fields are labeled 1 or 2 for the first or second site. As in the 5D model, we

want the doublets to live in the bulk and be vectorlike, so we denote them Qa
L and
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Qa
R, a = 1, 2. To match the higher dimension model, right-handed bulk fermions

should not have zero modes. We will achieve this by simply not including Q1
R into

the theory, thinking of site 1 as a brane. We will think of site 2 as bulk or brane as

necessary. In the 5D model the singlets, u and d, are on the boundary, so we add

only u1 and d2. The Higgs boson, H , lives in the bulk, thus it has couplings to both

sites. To complete the matter sector of the model we introduce a complex field φ2

on the second site (‘in the bulk’) and a real link field χ that connects the two sites.

These fields will play a role similar to Φ, by violating CP and propagating a twist.

Without enlarging the SM gauge group, or deconstructing it, the renormalizable

couplings between Q1
L and d2 (or Q2

L and u1) can only be prevented through the use

of the global symmetries. These symmetries serve the function of locality in the extra

dimension. A convenient assignment of Z2 charges is

Q1
L Q2

L Q2
R u1 d2 φ χ H

Z1
2 − + + − + + − +

Z2
2 + − + + − − + +

Z12
2 + + − + + − − +

The most general Lagrangian with this set of discrete symmetries is:

L = Lkin −
[

Y ij
u H̃Q̄

1
Liu

1
j + Y ij

d HQ̄
2
Lid

2
j + h.c

]

−
[(

φhij + φ∗hij
P

)

Q̄2
LiQ

2
Rj + h.c

]

− χf ijQ̄1
LiQ

2
Rj − χf ijT

Q̄2
RiQ

1
Lj

−λR

[

(φ+ φ∗)2 − µ2
R

]2 − λI

[

(φ− φ∗)2 − µ2
I

]2 − λχ

(

χ2 − µ2
χ

)2
, (28)

We also assume CP is symmetry, spontaneously broken by the vev of φ. This forces

all the Yukawa couplings to be real.

In addition we choose the Yukawa couplings of φ to preserve parity on site 2, that

is we take hP = hT . In contrast to the 5D theory, in which parity is guaranteed by

5D Lorentz invariance, this parity cannot be taken as an exact symmetry. It is just

a tree-level assumption. The essential difficulty is that parity is badly broken in the

two site model, where the bulk and boundaries are indistinguishable. We will return

to this issue in the next subsection.

Now, once φ and χ get vevs (but ignoring the Higgs for now) one linear combination

of the doublets Q1 and Q2 will pick up a mass, and one will not. The massless
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combination is determined by the deconstructed equivalent of (8):

f̃ ijQ1
Lj +M ijQ2

Lj = 0 (29)

where M ij =
(

〈φ〉hij + 〈φ∗〉hij
P

)

is the mass at site 2 which plays the role of the

hermitian bulk mass, and f̃ ij = f ij〈χ〉 is the real link. In the case that [M, f̃ ] = 0 we

can simply choose a flavor basis so that (29) is diagonal. But if [M, f̃ ] 6= 0, the best

we can do is choose a flavor basis so the Q’s are diagonal on site one. Then, the zero

modes are
(

Ψ0

−M−1f̃Ψ0

)

(30)

So in this case, M−1f̃ contains the information about the non-trivial twist. In par-

ticular, note that the twist matrix M−1f̃ has a real determinant, like K(π) in (16),

because f̃ is real and M is hermitian. (As in the 5D model, we can choose an or-

thonormal basis without introducing a phase into the determinant of the zero mode,

cf. Appendix A.)

Putting the Higgs back in, we can write the effective Yukawa couplings for the zero

modes as the bare Yukawas times the value of the wavefunctions on the sites:

yαβ
u = Y αi

u Ψiβ
0 and yab

d = Y αi
d (M−1f̃Ψ0)

iβ. (31)

This is the 4D analog of (16), and because the determinant of M−1f̃ is real, θ̄ = 0

at tree level. Also, like in the 5D case, because the Yukawas are in general complex,

there will be a generically large CKM phase. In fact, the CKM phase is unsuppressed

even when the massive modes are taken to be super heavy. To see this we can take

the limit |〈φ〉| → ∞ and 〈χ〉 → ∞ such that the ratio is constant. The twist of

the zero mode depends on M−1f̃ which remains constant in this limit with an O(1)

phase. So this limit decouples the heavy states and leaves us with just the SM, but

with θ̄ = 0. Note that this is true in 5D too, where θ̄ and θweak in the effective theory

are independent of the KK mass scale L−1.

We can also see that the massive states do not introduce a contribution to θ̄. Since

the theory is only two sites the full mass matrices for the up and down-type quarks,

the parallel of (18), are only 6 × 6 and have the form

Mu =

(

vY ij
u 0

f̃ ij M ij

)

Md =

(

vY ij
d 0

M ij f̃ ij

)

(32)
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where v is the Higgs vev. The up and down matrices are separated and are triangular,

so we can simply read off that the determinant is real. Therefore, as in the 5D model,

the KK states do not affect that θ̄ = 0 to leading order.

B. Corrections

Let us return to the assumption that hP = hT , which made couplings of φ parity

symmetric. As mentioned above, this is the analog of 5D Parity, which made M

Hermitian in (6). However, since parity is not an exact symmetry, parity violating

couplings of φ will be generated in perturbation theory. This in turn will generate a

strong CP phase. We will now estimate the minimum natural size of hP − hT within

the effective theory.

Due to the exact global symmetries of this model, the leading contribution to

hP − hT arises at two loops. For example, a correction to the hφQ̄2
LQ

2
R term comes

from the following diagram:

�
χ

φ

Q2
R

Q̄2
L

φ

h

h
f

fT

hT

(33)

This and other two loop graphs give

h̃P (µ) = hT +
1

(16π2)2
ln
(

µ

Λ

)

(

hfTfhThT + hTfTfhTh
)

(34)

h̃(µ) = h +
1

(16π2)2
ln
(

µ

Λ

)

(

hfTfhhT + hTfTfhh
)

.

The resulting P violating piece is given by

h̃P (µ)
T − h̃(µ) ∝ h

[

h , fTf
]

hT + hT
[

h , fTf
]

h . (35)

We could have anticipated something like Eq.(35) from a symmetry argument. Look-

ing at (28), we see that there is a spurious SU(3) on site 1 under which f is a

fundamental, and so ffT is an adjoint, and h and hP are adjoints too. Thus, ignoring

the Yukawas, either h or ffT alone would only break this SU(3) down to U(1)3, and
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so would h and ffT together if they could be simultaneously diagonalized. But if

there were a residual U(1)3 symmetry, the system on the first site could be factorized

to three single generation subsystems which could not violate CP and P. Thus any

contribution to θ̄ should contain the commutator factor in (35).

Another contribution to parity violation in the couplings of φ and to the strong

CP phase arises from similar diagrams with d quarks in the loop. This contribution is

the same as above, but has YdY
T
d instead of ff t. And so it is a smaller effect, because

of the smallness of the down type Yukawas. Incidentally, this motivates the choice to

put the d type quarks on the second site.

The fact that (35) is a two loop effect gives θ̄ ∼ (16π2)2 ∼ 4 × 10−5. This is quite

small, but larger than current bounds. We can further suppress θ̄ by simply tuning

the φ or χ Yukawas, h, f ∼ 10−2. This is a technically natural tuning because of

the residual U(1)3 symmetry on the first or second site in the limit f = 0 or h = 0

respectively.

To summarize, we have shown that the 5D twist has a 4D analog and can be used

to solve the strong CP problem. The glaring problem with the 4D model is that we

must tune hP ≈ hT to achieve the equivalence of 5D parity. It is radiatively stable

for these two matrices to differ by one part in 10−7, but because there is no enhanced

symmetry when hP = hT , this is not really any better than simply tuning θ̄.

It is possible to make the 4D model more technically natural, for example, by

promoting hijφ to a field φij transforming in the adjoint of the flavor group on site 1.

Then, 〈φij〉 is guaranteed to be Hermitian without tuning. Of course, one has to

worry about contributions from the explicit flavor violation due to Yd and f ’s, unless

these couplings are promoted to fields as well. One could also construct more elabo-

rate models with more sites and possibly distribute the gauge group. This will further

suppresses contributions to the CP phase (for example the leading contribution ap-

pears at three loops in three site model); however, it may also require additional

fine-tuning to guarantee a sufficient amount of twisting. The bottom line is that we

can use this 4D setup to generate a class of solutions to the strong CP problem which

are similar to, but not contained in, the Nelson-Barr class. The main drawback of

these 4D models is that, in contrast to the 5D models which inspired them, they do
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not relate strong CP to flavor.

V. COMPARISON WITH OTHER MODELS

Our solution to the strong CP problem, based on twisting, is related to some other

solutions and it is instructive to explore some of the similarities and differences in

more detail. In our 5D model in Section III, we made essential use of both CP, which

we took to be spontaneously broken, and P, which is a good symmetry in the bulk

and part of 5D Lorentz invariance. The symmetry structure was shown in Figure 1.

From the 4D point of view, it may seem like we have just produced another Nelson-

Barr model, where the heavy fermions are just KK modes of the bulk fields. On the

other hand, the use of P and CP may remind the reader of left-right (LR) symmetric

models [26], which also claimed to have a natural solution to strong CP. Finally, the

twisting looks a little like Hiller-Schmaltz. In this section, we clarify the distinctions

between our model and these others.

A. Nelson-Barr

Let us start with Nelson-Barr. Nelson’s original model was in the context of an

SU(5) GUT, but for our purposes it is simpler to review Barr’s generalization. Call

the standard model fermions F , and add some vectorlike generations R, R̄ and CP

breaking scalars Φ. The global symmetries force the mass matrix to look like, in the

F ,R,R̄ basis,

Mu ∼MT
d ∼













R〈H〉 C 0C 0 R
0 R 0













. (36)

Nelson used a global U(1) to get the top zero and SO(3) flavor to get the zero in the

bottom left, implementing Barr’s criteria. The determinant of this matrix is real, so

θ̄ = 0 at tree level, but because of the complex numbers, θweak will in general be large.

As we have emphasized, radiative corrections to θ̄ from the standard model are

small. If the new fields in Nelson-Barr are to preserve this situation, there needs

to be a separation of scales among the CP-breaking scalar vev 〈Φ〉, the size of the
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mass term MR̄R for the heavy fermions, and the Higgs vev 〈H〉. In particular, we

need 〈Φ〉 ≫ M ≫ 〈H〉. If we ignore the tuning of the SM Higgs, this reduces to a

technically natural tuning of the fermion masses M . So we can see that the virtue

of Nelson-Barr is that it converts the strong CP problem into a technically natural

tuning of the fermion masses M . However, there is another tuning implicit in Nelson-

Barr: 〈Φ〉 ≪ Λ, where Λ is the scale of unknown new physics. In fact, we should

include non-renormalizable operators suppressed by powers Λ, such as

(4πΦ)n

Λn
FF̃ → θ̄ ∼ 32π2

(

4π
〈Φ〉
Λ

)n

(37)

Here, the 4π’s have been set by NDA, and the relevant power of n should be deter-

mined by the symmetries of the particular theory. But even a reasonably large n,

such as n = 4, leads to 〈Φ〉 ∼< 10−5Λ6. This requires a tuning which is less natural

than the tuning of θ̄, because the radiative corrections to θ̄, unlike 〈Φ〉 are small. Of

course, one can probably get around this tuning by adding new fields and symmetries,

or by including supersymmetry, which allows 〈Φ〉 to be naturally small.

Coming to the comparison with the current work, we see that Nelson-Barr ma-

trix (36) looks something like the mass matrix we derived in Section III. That ma-

trix, (18), has the schematic form:

Mu =







R〈H〉 0R〈H〉 R , Md =







R〈H〉K 0R〈H〉K R , det(K) ∈ R (38)

Recall that K is the twist matrix, which is guaranteed to have a real determinant,

ultimately because of 5D Parity. In our case, the 0 arises because the heavy fermions

are KK excitations of the SM zero modes, and therefore orthogonal. So not only

is (38) organizationally different from (36), the underlying symmetries guaranteeing

θ̄ = 0 at leading order are not related. Thus, although our model involves spontaneous

CP violation, it is really not a Nelson-Barr.

In addition, we have shown that non-renormalizable operators which contribute to

θ̄ are naturally small. In particular, the operator (25) gives θ̄ ∼ 10−12 without any

6 It has been pointed out in [27] that operators like Φ2R̄R/Λ can also contribute to θ̄, forcing 〈Phi〉 <

10−10Λ < 109 GeV. Such a low scale for CP breaking can lead to astrophysically dangerous cosmic

strings.
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tuning at all. In contrast, the analog (37) with n = 2 and and say 〈Φ〉 = 0.01Λ leads

to θ̄ ∼ 1. The root of the extra suppression in our case is the symmetry structure

shown in Figure 1. In particular, since CP is symmetry in the bulk and P is a

symmetry on the brane, locality forces non-renormalizable terms which violate CP

and P (such as FF̃ ) to involve operators like ∂5 and δ(z). But these turn into factors

of (ΛL)−1 ≪ 1 in the low energy theory.

B. Left-Right models

In addition to Nelson-Barr, our model has much in common with, but is different

from, left-right symmetric models[26]. Left-right models are based on the symmetry

group SU(2)L × SU(2)R. The fermions Qi
L and Qi

R are fundamentals and the Higgs

is a bifundamental Φ. Under parity Qi
L ↔ Qi

R and Φ ↔ Φ† (Φ should be thought of

as a 2 × 2 matrix, and i is a flavor index). If we take a generic Yukawa interaction

fijΦQ̄iQj and add its parity and Hermitian conjugate, we get

L ⊃ (fij + f †
ij)ΦQ̄

i
LQ

j
R + (fij + f †

ij)Φ
†Q̄i

RQ
j
L (39)

One actually needs separate Yukawas for Φ and σ2Φ
∗σ2 to have a realistic flavor

model, and additional fields to break parity, but these additions are irrelevant here.

To solve the strong CP problem, Φ needs to get a vev so that the effective mass

matrix M = (f + f †)〈Φ〉 has a real determinant. There are two possibilities [28]: 1)

If f is real, by CP, but 〈Φ〉 is complex, breaking CP spontaneously, then detM will

be complex, so that does not work. 2) Instead, we can take f complex but 〈Φ〉 real,

which does lead to an Hermitian M ; but if f is complex, CP is not a symmetry and

then there is no reason to expect 〈Φ〉 to be real. This is not to say that left-right

models cannot solve strong CP (for example, there are natural left-right solutions

which invoke supersymmetry[30]), only that θ̄ is not zero automatically.

In contrast, recall that our Yukawa interactions are of the form (5)

L ⊃ (fijΦ + f †
ijΦ

⋆)Q̄i
LQ

j
R + (fijΦ + f †

ijΦ
⋆)Q̄i

RQ
j
L (40)
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So if f is real, but 〈Φ〉 complex, which is natural, then the effective mass matrix will

automatically be Hermitian, and so the determinant is real. The difference is that

our Φ is a singlet and not a bifundamental and so the couplings in (40) are allowed.

C. Hiller-Schmaltz

Finally, it is insightful to observe a formal similarity between our model and

that of Hiller and Schmaltz [31, 32]. Hiller-Schmaltz is a supersymmetric model,

in which CP is spontaneously broken at a much higher scale than SUSY. Due to

non-renormalization theorems in SUSY, θQCD does not get renormalized. All the CP

violation in the low energy theory enters through finite contributions to wavefunction

renormalization factors Zi. Because of the reality of the Kahler potential these factors

come through Hermitian matrices with real determinants. Thus they contribute to a

CKM phase but not to θQFD, and so θ̄ remains zero.

To see how this relates to our model, recall that in our case, the CP violation

comes in through z-dependence of the bulk fermion masses. If we preform a z-

dependent flavor rotation to diagonalize these masses, undoing the twist, the CP

violation appears in z-dependent kinetic terms. As in Hiller-Schmaltz, the coefficient

of the kinetic terms are Hermitian, and so the kinetic terms generate a CKM phase,

but no θ̄. Actually, the analogy is not quite so clean, because the coefficient of the

kinetic terms in the low energy theory will involve the twist matrix K (11), which

is not Hermitian, but still has a real determinant. And of course, in our model the

phase rotation contributing to CP is a classical effect, while in Hiller-Schmaltz it

comes from loops. But still, it is entertaining to consider the similarity between the

two models, especially in light of AdS/CFT, which also relates 4D RG flows to moving

along an extra dimension. Finally, we should comment that both Hiller-Schmaltz and

our model solve the strong CP problem within existing frameworks, SUSY and split

fermions respectively, which have been established for other purposes.
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VI. DISCUSSION

Whether the strong CP problem is a serious inadequacy of the standard model

depends on your attitude towards fine tuning. On the one hand, setting θ̄ = 0 is not

natural in the ’t Hooft sense because no symmetry is enhanced in that limit. On the

other hand, θ̄ is stable at 10−14 and so it is technically natural in the “effective field

theory sense;” that is, if one imposes a cutoff (say Λ ∼ MPl), the radiative corrections

are smaller than its initial value, even without any additional symmetries. If we

believe that the second type of tuning is acceptable, there is no strong CP problem,

because we can just set θ̄ = 0 at the cutoff. However, if we allow only the first type of

tuning, we should attempt to make θ̄ = 0 ’t Hooft natural by imposing a symmetry,

such as CP. Then the strong CP problem becomes: why is weak CP violation in the

standard model so large?

Realistic models of spontaneous CP violation which answer this question often

invoke many new particles and new global symmetries, and eventually distribute the

tuning of θ̄ among tunings of Yukawa couplings. But if one accepts that there should

be new physics at some cutoff, then as we showed in Section V, one must also confront

the tuning of scalar vevs. Such tunings are UV-sensitive and not technically natural

in any sense, and therefore worse than simply setting θ̄ to zero by hand. Although

one should be able to avoid the tunings by adding more structure to the model, the

point remains that most models in this class are designed just to solve the strong CP

problem.

In this paper, we not only present a solution to the strong CP problem with mini-

mal tuning, we do so in the context of flavor. We have shown that with a simple setup

– a 5D orbifold with the SU(2) doublets in the bulk, the singlets on opposite branes,

and a single CP breaking scalar and Higgs – θ̄ comes out at 10−7. No additional

symmetries are assumed. This estimate is based on the most general assumptions

about the UV completion; the contribution from the standard model is much smaller.

Moreover, with parameters of order one that shift the bulk wavefunctions, exponen-

tially varied masses and mixing angles can be generated using split-fermions. Of

course, θ̄ currently looks to be smaller than 10−10, and so either some tuning, or a
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little more model building is necessary. We have suggested some ways in which this

may be done.

We have also produced a 4D realization of the twisting mechanism for breaking

CP. However, in order to reproduce the effect of exact parity in the bulk one must

either start with a tuned model at tree level, or assume some flavor symmetries.

The simplest such realization is a two site model that gives an acceptable strong CP

phase once some Yukawa couplings are assumed to be small ∼ 10−2. This model

bears resemblance to conventional Nelson-Barr type models, however we have shown

that it is not actually in the Nelson-Barr class.

There is much more to be done. We would like to know if a flavor model based on

this setup is compatible with CKM parameters without tuning. To make progress,

we would need to know more about how to choose the potential for the bulk fields so

that they produce acceptable fermion profiles and sufficient twisting. If we assume

flavor symmetries, we would need to know how the flavor symmetries are broken to

produce a twist. Also, it would be interesting to look at the cosmology of these

models, in particular at baryogenesis. It was noted in [29] that this framework may

satisfy some of the Sakharov conditions– it contains a scalar that may undergo a first

order phase transition, and it has a new source of CP violation. So twisted split

fermions potentially addresses all of the CP issues in the standard model, strong,

weak, and baryogenesis, as well as the flavor puzzle.
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APPENDIX A: ORTHONORMALIZATION

In this appendix we will address the following subtlety. The zero mode wavefunc-

tions ψi, the solutions to (8), are orthogonal only when we integrate over the extra

dimension
∫ π

0
ψi

α(z)ψj
α(z) dz = δij (A1)

Recall that α labels which state and i its direction in flavor space. But the solutions

we used, given by (9) and (10), do not necessarily satisfy this requirement. The

concern is that by taking orthonormal linear combinations, by a transformation such

as

ψi
α(z)→ψ

i
β(z)Oβ

α (A2)

we might introduce a strong CP phase. We will now show that this does not happen.

The orthonormalization procedure can be done in two steps: we first multiply by

a real diagonal matrix, O1, such that all three solutions ψi are normalized to 1 when

integrated over the extra dimension. We then multiply by a second matrix O2 that

will render the solutions orthogonal. Without loss of generality this matrix may take

the form

O2 =











1 sin teis 0

0 cos t 0

0 0 c











·











1 0 sinweiu

0 1 cosw sin xeiv

0 0 cosw cosx











(A3)

where the first matrix in the product makes ψ2 orthogonal to ψ1, and the second

makes ψ3 orthogonal to ψ1 and the new ψ2. Because both O1 and O2 have real

determinants, the orthonormalization procedure does not introduce a phase into the

determinant of the profile matrix, and thus does not damage our solution to the

strong CP problem.

APPENDIX B: TWISTING WITH SYMMETRIES

In section IIIC we mentioned that it may be useful for the bulk scalar to be an

adjoint of the flavor group. We then assumed that the vev of the bulk scalar could

be twisted. However, since we impose a flavor symmetry, the bulk potential for the
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scalar must be flavor invariant. What causes the adjoint to pick a different direction

in flavor space in different locations? One would expect that a single adjoint would

tend to be aligned, but also that twisting along the flat direction costs little energy.

In this appendix we show some examples where a twist generically occurs.

One possibility is to add more adjoints with a non-trivial potentials such that

they tend to increase at different rates. For example, with two adjoints Φ1,2, if the

potential contains a term such as

V12 =
[

Tr(Φ1Φ2)
]2
, (B1)

then the adjoints will prefer to point in perpendicular directions in SU(3) flavor space.

If they point in commuting directions, of which there are two in SU(3), no twisting

will be induced. But if we add a third adjoint with similar couplings then it cannot

choose an additional orthogonal direction which is diagonal.

Now, the bulk fermions will couple to an arbitrary combination of these adjoints

such that the effective mass is

Mij(z) =
∑

A

cAΦA
ij(z). (B2)

If the adjoints indeed increase at different rates and do not commute, then this mass

matrix is twisted. In general, if the number of adjoints is larger than the rank of the

group, a twist will be induced. It is likely that fewer adjoints are necessary, but we

merely wanted to present sufficient conditions that it could be done.

A second possibility is to force a twist by violating the flavor symmetry explicitly

on both boundaries. Suppose that each boundary breaks the flavor group down to

an SU(2) subgroup. This breaking can be communicated to the bulk by introducing

a scalar field with even orbifold parity and flavor indices, say an adjoint χ. Since

it is even it cannot couple to the fermions in the bulk, and thus hardly affects the

zero modes. It can, however, couple to the CP breaking adjoint Φ, for example

through a term like Tr[χΦΦ]. An arbitrary potential can be now written for χ on the
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boundaries. This will induce twisting of its vev, which will in turn twist Φ.
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